Glioblastoma clinical trials at UCLA
28 in progress, 11 open to eligible people
Evaluate Multiple Regimens in Newly Diagnosed and Recurrent Glioblastoma
open to eligible people ages 18 years and up
Glioblastoma (GBM) adaptive, global, innovative learning environment (GBM AGILE) is an international, seamless Phase II/III response adaptive randomization platform trial designed to evaluate multiple therapies in newly diagnosed (ND) and recurrent GBM.
Los Angeles, California and other locations
Blood-Brain Barrier Disruption (BBBD) for Liquid Biopsy in Subjects With GlioBlastoma Brain Tumors
open to eligible people ages 18-80
The purpose of this study is to evaluate the safety and efficacy of targeted blood brain barrier disruption with Exablate Model 4000 Type 2.0/2.1 for liquid biopsy in subjects with suspected Glioblastoma brain tumors
Los Angeles, California and other locations
FDG PET/CT in Monitoring Very Early Therapy Response in Patients With Glioblastoma
open to eligible people ages 18-99
This pilot clinical trial studies fluordeoxyglucose (fludeoxyglucose) F-18 (FDG) positron emission tomography (PET)/computed tomography (CT) in monitoring very early therapy response in patients with glioblastoma. Diagnostic procedures, such as FDG PET/CT, may help measure a patient's response to earlier treatment. Chemotherapy can induce very rapid changes to the tumor's glucose consumption which can be measured with imaging. FDG PET/CT shortly after the start of therapy may help identify very early therapy response in patients with glioblastoma.
Los Angeles, California
Pembrolizumab and a Vaccine (ATL-DC) for the Treatment of Surgically Accessible Recurrent Glioblastoma
open to eligible people ages 18 years and up
This phase I trial studies the side effects and how well of pembrolizumab and a vaccine therapy (ATL-DC vaccine) work in treating patients with glioblastoma that has come back (recurrent) and can be removed by surgery (surgically accessible). Immunotherapy with monoclonal antibodies, such as pembrolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Vaccines, such as ATL-DC vaccine, may help the body build an effective immune response to kill tumor cells. Giving pembrolizumab and ATL-DC vaccine may work better in treating patients with glioblastoma compared to ATL-DC alone.
Los Angeles, California
Optimal Dose of Candidate GBM Vaccine VBI-1901 in Recurrent GBM Subjects
open to eligible people ages 18 years and up
The purpose of this study is to assess the safety and tolerability of VBI-1901 in subjects with recurrent malignant gliomas (glioblastoma, or GBM).
Los Angeles, California and other locations
/ 2 Drug Resistant Immunotherapy With Activated, Gene Modified Allogeneic or Autologous γδ T Cells (DeltEx) in Combination With Maintenance Temozolomide in Subjects With Recurrent or Newly Diagnosed Glioblastoma
open to eligible people ages 18 years and up
This multicenter, Phase 1b/2 study is being conducted to determine if the experimental cell therapy is safe, tolerable and can delay the return of cancer in patients with a newly diagnosed or recurrent glioblastoma multiforme (GBM) in combination with standard chemotherapy treatment temozolomide (TMZ). If there is a 25% or greater improvement in survival in this study then the therapy should be studied further.
Los Angeles, California and other locations
Imlifidase in Anti-GBM Disease
open to eligible people ages 18 years and up
An open-label, controlled, randomised, multi-centre Phase 3 trial evaluating renal function in patients with severe anti-GBM disease comparing imlifidase and standard of care (SoC) with SoC alone. All patients will remain in the trial for 24 months.
Los Angeles, California and other locations
RSC-1255 for Treatment of Patients With Advanced Malignancies
open to eligible people ages 18 years and up
RSC-101 is a Phase 1a/1b clinical trial of RSC-1255 in adult study participants with advanced solid tumor malignancies who are intolerant of existing therapies known to provide clinical benefit, have disease that has progressed after standard therapy, or have previously failed other therapies. The study has two phases. The purpose of Phase 1a (Dose Escalation) is to confirm the appropriate treatment dose and Phase 1b (Dose Expansion) is to characterize the safety and efficacy of RSC-1255.
Los Angeles, California and other locations
APL-101 Study of Subjects With NSCLC With c-Met EXON 14 Skip Mutations and c-Met Dysregulation Advanced Solid Tumors
open to eligible people ages 18 years and up
To assess: - efficacy of APL-101 as monotherapy for the treatment of NSCLC harboring MET Exon 14 skipping mutations, NSCLC harboring MET amplification, solid tumors harboring MET amplification, solid tumors harboring MET fusion, primary CNS tumors harboring MET alterations, solid tumors harboring wild-type MET with overexpression of HGF and MET - efficacy of APL-101 as an add-on therapy to EGFR inhibitor for the treatment of NSCLC harboring EGFR activating mutations and developed acquired resistance with MET amplification and disease progression after documented CR or PR with 1st line EGFR inhibitors (EGFR-I)
Santa Monica, California and other locations
Biologic Association Between Metabolic Magnetic Resonance-positron Emission Tomograph (MR-PET) and Tissue Measures of Glycolysis in Brain Tumors of Infiltrating Glioblastoma Cells
open to eligible people ages 18 years and up
The purpose of this project is to validate a new combined MRI and PET imaging technique as a biomarker or measure of glycolysis in brain tumors. To accomplish this, the investigators propose obtaining image-guided measures of tissue pH and biopsied tissue in tumor areas selected for bulk resection surgery. Investigators will then correlate the imaging measurements with pH, RNA expression, protein expression, and bioenergetics measurements of key glycolytic enzymes.
Los Angeles, California
Magnetic Resonance Imaging for Improving Knowledge of Brain Tumor Biology in Patients With Resectable Glioblastoma
open to eligible people ages 18 years and up
This clinical trial uses a type of imaging scan called magnetic resonance imaging (MRI) to study brain tumor biology in patients with glioblastoma that can be removed by surgery (resectable). Malignant gliomas are the second leading cause of cancer mortality in people under the age of 35 in the United States. Glioblastoma is a type of malignant glioma with very poor patient prognosis. There are currently only about 3 drugs approved by the Food and Drug Administration (FDA) for the treatment of glioblastoma, one of them being administration of bevacizumab, which is very expensive. It is the most widely used treatment for glioblastoma with dramatic results. However, previous clinical trials have not demonstrated an overall survival benefit across all patient populations with glioblastoma that has returned after treatment (recurrent). The study aims to identify which patients who will benefit from bevacizumab therapy by observing MRI images and corresponding imaging biomarkers.
Los Angeles, California
18F-FDG PET and Osimertinib in Evaluating Glucose Utilization in Patients With EGFR Activated Recurrent Glioblastoma
Sorry, in progress, not accepting new patients
This phase II trial studies how well fludeoxyglucose F-18 (18F-FDG) positron emission tomography (PET) and osimertinib works in evaluating glucose utilization in patients with EGFR activated glioblastoma. Osimertinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. 18F-FDG PET imaging may help to detect changes in tumor glucose utilization, which may allow investigators to obtain an early read out on the impact of osimertinib on recurrent glioblastoma patients whose tumors have EGFR activation.
Los Angeles, California
ACP-196 in Subjects With Recurrent Glioblastoma Multiforme (GBM)
Sorry, in progress, not accepting new patients
A Phase 1b/2, Multicenter, Open-Label Study of ACP-196 in Subjects with Recurrent Glioblastoma Multiforme (GBM)
Los Angeles, California and other locations
Anti-tumor Activity of RO7428731 in Participants With Glioblastoma
Sorry, in progress, not accepting new patients
This is an open-label, multicenter study to assess safety, tolerability, pharmacokinetics (PK), immunogenicity, pharmacodynamics (PD), and preliminary efficacy of RO7428731 administered as a monotherapy in participants with newly diagnosed or recurrent epidermal growth factor receptor variant III (EGFRvIII)-positive glioblastoma (GBM).
Los Angeles, California and other locations
Abemaciclib in Recurrent Glioblastoma
Sorry, in progress, not accepting new patients
This research study is studying a targeted therapy as a possible treatment for recurrent glioblastoma (GBM). The following intervention will be used in this study: -Abemaciclib
Los Angeles, California and other locations
ERAS-801 in Patients With Recurrent Glioblastoma (THUNDERBBOLT-1)
Sorry, in progress, not accepting new patients
- To evaluate the safety and tolerability of escalating doses of ERAS-801 in study participants with recurrent glioblastoma multiforme (GBM). - To determine the Maximum Tolerated Dose (MTD) and/or Recommended Dose (RD) of ERAS-801. - To evaluate the antitumor activity of ERAS-801. - To evaluate the PK profile of ERAS-801.
Los Angeles, California and other locations
Adavosertib, Radiation Therapy, and Temozolomide in Treating Patients With Newly Diagnosed or Recurrent Glioblastoma
Sorry, in progress, not accepting new patients
This phase I trial studies the side effects and best dose of adavosertib when given together with radiation therapy and temozolomide in treating patients with glioblastoma that is newly diagnosed or has come back. Adavosertib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Radiation therapy uses high energy x-rays to kill tumor cells and shrink tumors. Drugs used in chemotherapy, such as temozolomide, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving adavosertib, radiation therapy, and temozolomide may work better in treating patients with newly diagnosed or recurrent glioblastoma compared to radiation therapy and temozolomide alone.
Los Angeles, California and other locations
Dabrafenib Combined With Trametinib After Radiation Therapy in Treating Patients With Newly-Diagnosed High-Grade Glioma
Sorry, not currently recruiting here
This phase II trial studies how well the combination of dabrafenib and trametinib works after radiation therapy in children and young adults with high grade glioma who have a genetic change called BRAF V600 mutation. Radiation therapy uses high energy rays to kill tumor cells and reduce the size of tumors. Dabrafenib and trametinib may stop the growth of tumor cells by blocking BRAF and MEK, respectively, which are enzymes that tumor cells need for their growth. Giving dabrafenib with trametinib after radiation therapy may work better than treatments used in the past in patients with newly-diagnosed BRAF V600-mutant high-grade glioma.
Torrance, California and other locations
Lapatinib Ditosylate Before Surgery in Treating Patients With Recurrent High-Grade Glioma
Sorry, in progress, not accepting new patients
This pilot phase I clinical trial studies how well lapatinib ditosylate before surgery works in treating patients with high-grade glioma that has come back after a period of time during which the tumor could not be detected. Lapatinib ditosylate may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.
Los Angeles, California and other locations
Oral ONC201 in Recurrent GBM, H3 K27M Glioma, and Midline Glioma
Sorry, in progress, not accepting new patients
ONC201 is a new drug candidate that kills cancer cells but not normal cells in laboratory studies and has been previously evaluated in a phase I clinical trial in advanced cancer patients. This clinical trial will enroll patients with recurrent glioblastoma or recurrent WHO Grade IV gliomas with the H3 K27M mutation.
Los Angeles, California and other locations
PH Sensitive MRI Based Resections of Glioblastoma
Sorry, not yet accepting patients
Standard of care therapy and all FDA approved adjuvant therapy for glioblastoma continue to provide < 12-month progression free survival (PFS) and < 24-month overall survival (OS). Standard of care therapy continues to be defined by the volume of tumor that enhances with gadolinium on standard magnetic resonance imaging (MRI). The investigators have identified a significant tumor burden in non-enhancing (NE) regions beyond the contrast-enhancing (CE) portion of tumor. Furthermore, the investigators have adapted a pH-sensitive technique called amine chemical exchange saturation transfer (CEST) MRI to identify tumor cells in NE regions with high sensitivity and specificity. This study is a randomized trial of CEST based resections versus standard of care in newly diagnosed glioblastoma with primary endpoint of progression free survival and secondary endpoints of overall survival and quality of life metrics. The hypothesis being tested is whether surgical resection of infiltrating tumor cells visualized by CEST MRI contributes to survival in glioblastoma patients.
Los Angeles, California
PH Weighted Chemical Exchange Saturation Transfer MRI-Based Surgical Resection to Improve Survival in Patients With Glioblastoma
Sorry, not yet accepting patients
This phase III trial compares pH weighted chemical exchange saturation transfer (CEST) magnetic resonance imaging (MRI)-based surgical resections to standard of care surgical resections for the treatment of patients with glioblastoma. Standard of care therapy for glioblastoma is surgery to remove tumor tissue that enhances on standard MRI imaging, however, it has been shown that significant tumor burden exists in the region around the tumor tissue that does not enhance with standard MRI. MRI is a procedure in which radio waves and a powerful magnet linked to a computer are used to create detailed pictures of areas inside the body. These pictures can show the difference between normal and tumor tissue. CEST MRI is a technique that uses differences in the tissue environment, like protein concentration or intracellular pH, to generate contrast differences. CEST MRI may identify tumor tissue that does not enhance with standard of care MRI. PH weighted CEST MRI based surgical resection may be more effective compared to standard of care surgical resection in treating patients with glioblastoma.
Los Angeles, California
NGM707 as Monotherapy and in Combination With Pembrolizumab in Advanced or Metastatic Solid Tumor Malignancies
Sorry, in progress, not accepting new patients
Study of NGM707 as Monotherapy and in Combination with Pembrolizumab in Advanced or Metastatic Solid Tumor Malignancies
Santa Monica, California and other locations
Surgical Nivolumab And Ipilimumab For Recurrent GBM
Sorry, in progress, not accepting new patients
This research trial is studying the safety and effectiveness of nivolumab in combination with ipilimumab and surgery when used in the treatment of recurrent glioblastoma. The names of the study drugs involved in this study are: - Nivolumab - Ipilimumab - Placebo (IV solution with no medicine) - Zr-89 Crefmirlimab berdoxam (optional sub-study)
Los Angeles, California and other locations
Testing the Ability of AMG 232 (KRT 232) to Get Into the Tumor in Patients With Brain Cancer
Sorry, currently not accepting new patients, but might later
This phase I trial studies the side effects and best dose of navtemadlin in treating patients with glioblastoma (brain cancer) that is newly diagnosed or has come back (recurrent). Navtemadlin may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.
Los Angeles, California and other locations
Veliparib, Radiation Therapy, and Temozolomide in Treating Patients With Newly Diagnosed Malignant Glioma Without H3 K27M or BRAFV600 Mutations
Sorry, in progress, not accepting new patients
This phase II trial studies how well veliparib, radiation therapy, and temozolomide work in treating patients with newly diagnosed malignant glioma without H3 K27M or BRAFV600 mutations. Poly adenosine diphosphate (ADP) ribose polymerases (PARPs) are proteins that help repair DNA mutations. PARP inhibitors, such as veliparib, can keep PARP from working, so tumor cells can't repair themselves, and they may stop growing. Radiation therapy uses high energy x-rays to kill tumor cells and shrink tumors. Drugs used in chemotherapy, such as temozolomide, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving veliparib, radiation therapy, and temozolomide may work better in treating patients with newly diagnosed malignant glioma without H3 K27M or BRAFV600 mutations compared to radiation therapy and temozolomide alone.
Los Angeles, California and other locations
Vorinostat and Temozolomide in Treating Patients With Malignant Gliomas
Sorry, in progress, not accepting new patients
This phase I trial is studying the side effects and best dose of vorinostat when given together with temozolomide in treating patients with malignant gliomas. Drugs used in chemotherapy, such as vorinostat and temozolomide, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Vorinostat may also stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Vorinostat may help temozolomide work better by making tumor cells more sensitive to the drug. Giving vorinostat together with temozolomide may kill more tumor cells.
Los Angeles, California and other locations
GBM Patients With Already Manufactured DCVax®-L Who Have Screen-Failed Protocol 020221
Sorry, not accepting new patients
The study is an open-label expanded access study for patients for whom vaccine was manufactured during the Northwest Biotherapeutics' 020221 DCVax-L for GBM screening process, but who subsequently failed to meet specific enrollment criteria. Patients will receive therapy per investigator discretion (standard of care) as well as active vaccine per the 020221 protocol administration schedule. It is estimated that approximately 99 patients will enroll in this study.
Los Angeles, California and other locations
Our lead scientists for Glioblastoma research studies include Timothy Cloughesy PHIOANH Leia NGHIEMPHU Linda Liau Kunal S Patel, MD Joel Hecht Johannes Czernin, MD Richard Everson, MD Lee Rosen Benjamin Ellingson, PhD.
Last updated: