Extracorporeal Membrane Oxygenation clinical trials at UCLA
2 research studies open to eligible people
Platform of Randomized Adaptive Clinical Trials in Critical Illness
open to eligible people ages 18 years and up
PRACTICAL is a randomized multifactorial adaptive platform trial for acute hypoxemic respiratory failure (AHRF). This platform trial will evaluate novel interventions for patients with AHRF across a range of severity states (i.e., not intubated, intubated with lower or higher respiratory system elastance, requiring extracorporeal life support) and across a range of investigational phases (i.e., preliminary mechanistic trials, full-scale clinical trials). AHRF is a common and life-threatening clinical syndrome affecting millions globally every year. Patients with AHRF are at high risk of death and long-term morbidity. Patients who require invasive mechanical ventilation are at risk of ventilator-induced lung injury and ventilator-induced diaphragm dysfunction. New treatments and treatment strategies are needed to improve outcomes for these very ill patients. Utilizing advances in Bayesian adaptive trial design, the platform will facilitate efficient yet rigorous testing of new treatments for AHRF, with a particular focus on mechanical ventilation strategies and extracorporeal life support techniques as well as pharmacological agents and new medical devices. The platform is designed to enable evaluation of novel interventions at a variety of stages of investigation, including pilot and feasibility trials, trials focused on mechanistic surrogate endpoints for preliminary clinical evaluation, and full-scale clinical trials assessing the impact of interventions on patient-centered outcomes. Interventions will be evaluated within therapeutic domains. A domain is defined as a set of interventions that are intended to act on specific mechanisms of injury using different variations of a common therapeutic strategy. Domains are intended to function independently of each other, allowing independent evaluation of multiple therapies within the same patient. Once feasibility is established, Bayesian adaptive statistical modelling will be used to evaluate treatment efficacy at regular interim adaptive analyses of the pre-specified outcomes for each intervention in each domain. These adaptive analyses will compute the posterior probabilities of superiority, futility, inferiority, or equivalence for pre-specified comparisons within domains. Each of these potential conclusions will be pre-defined prior to commencing the intervention trial. Decisions about trial results (e.g., concluding superiority or equivalence) will be based on pre-specified threshold values for posterior probability. The primary outcome of interest, the definitions for superiority, futility, etc. (i.e., the magnitude of treatment effect) and the threshold values of posterior probability required to reach conclusions for superiority, futility etc., will vary from intervention to intervention depending on the phase of investigation and the nature of the intervention being evaluated. All of these parameters will be pre-specified as part of the statistical design for each intervention trial. In general, domains will be designed to evaluate treatment effect within four discrete clinical states: non-intubated patients, intubated patients with low respiratory system elastance (<2.5 cm H2O/(mL/kg)), intubated patients with high respiratory system elastance (≥2.5 cm H2O/(mL/kg)), and patients requiring extracorporeal life support. Where appropriate, the model will specify dynamic borrowing between states to maximize statistical information available for trial conclusions. In this perpetual trial design, different interventions may be added or dropped over time. Where possible, the platform will be embedded within existing data collection repositories to enable greater efficiency in outcome ascertainment. Standardized systems for acquiring both physiological and biological measurements are embedded in the platform, to be acquired at sites with appropriate training, expertise, and facilities to collect those measurements.
Los Angeles 5368361, California 5332921 and other locations
ARDS in Children and ECMO Initiation Strategies Impact on Neurodevelopment (ASCEND)
open to eligible people ages up to 20 years
ASCEND researchers are partnering with families of children who receive extracorporeal membrane oxygenation (ECMO) after a sudden failure of breathing named pediatric acute respiratory distress syndrome (PARDS). ECMO is a life support technology that uses an artificial lung outside of the body to do the lung's work. ASCEND has two objectives. The first objective is to learn more about children's abilities and quality of life among ECMO-supported children in the year after they leave the pediatric intensive care unit. The second objective is to compare short and long-term patient outcomes in two groups of children: one group managed with a mechanical ventilation protocol that reserves the use of extracorporeal membrane oxygenation (ECMO) until protocol failure to another group supported on ECMO per usual care.
Los Angeles 5368361, California 5332921 and other locations
Last updated: