Brain Injury clinical trials at UCLA
5 in progress, 1 open to eligible people
Telerehabilitation Early After CNS Injury
open to eligible people ages 18 years and up
The goal of this clinical trial is to assess the safety and feasibility of providing extra doses of rehabilitation therapy for persons with a recent stroke, traumatic brain injury (TBI) and/or spinal cord injury (SCI). The therapy treatment targets to improve arm function by introducing telerehabilitation to the bedside of participants during the inpatient rehab admission period. Participants will use a newly developed functional training system (HandyMotion) to access therapy treatment program directly from their hospital room. HandyMotion is a sensor-based training system that can connect to the TV set in the hospital room, enabling patients to access their therapy training program to practice rehab-oriented games and exercises ad libitum, at any time of the day.
Los Angeles, California and other locations
Brain Oxygen Optimization in Severe TBI, Phase 3
Sorry, not currently recruiting here
BOOST3 is a randomized clinical trial to determine the comparative effectiveness of two strategies for monitoring and treating patients with traumatic brain injury (TBI) in the intensive care unit (ICU). The study will determine the safety and efficacy of a strategy guided by treatment goals based on both intracranial pressure (ICP) and brain tissue oxygen (PbtO2) as compared to a strategy guided by treatment goals based on ICP monitoring alone. Both of these alternative strategies are used in standard care. It is unknown if one is more effective than the other. In both strategies the monitoring and goals help doctors adjust treatments including the kinds and doses of medications and the amount of intravenous fluids given, ventilator (breathing machine) settings, need for blood transfusions, and other medical care. The results of this study will help doctors discover if one of these methods is more safe and effective.
Los Angeles, California and other locations
Personalized Brain Stimulation to Treat Chronic Concussive Symptoms
Sorry, not yet accepting patients
The goal of this study is to investigate a new treatment for chronic symptoms after concussion or mild traumatic brain injury in people aged 18-65 years old. Chronic symptoms could include dizziness, headache, fatigue, brain fog, memory difficulty, sleep disruption, irritability, or anxiety that occurred or worsened after the injury. These symptoms can interfere with daily functioning, causing difficulty returning to physical activity, work, or school. Previous concussion therapies have not been personalized nor involved direct treatments to the brain itself. The treatment being tested in the present study is a noninvasive, personalized form of brain stimulation, called transcranial magnetic stimulation (TMS). The investigators intend to answer the questions: 1. Does personalized TMS improve brain connectivity after concussion? 2. Does personalized TMS improve avoidance behaviors and chronic concussive symptoms? 3. Do the improvements last up to 2 months post-treatment? 4. Are there predictors of treatment response, or who might respond the best? Participants will undergo 14 total visits to University of California Los Angeles (UCLA): 1. One for the baseline symptom assessments and magnetic resonance imaging (MRI) 2. Ten for TMS administration 3. Three for post-treatment symptom assessments and MRIs Participants will have a 66% chance of being assigned to an active TMS group and 33% chance of being assigned to a sham, or inactive, TMS group. The difference is that the active TMS is more likely to cause functional changes in the brain than the inactive TMS.
Westwood, California
Ketogenic Diet for Pediatric Acute Brain Injury
Sorry, currently not accepting new patients, but might later
This is a prospective pilot study evaluating the safety and feasibility of implementing the ketogenic diet in children admitted to the pediatric intensive care unit with acute brain injury such as stroke, traumatic brain injury, and intracerebral hemorrhage. Animal studies suggest that in the aftermath of injury the brain's ability to use glucose as a fuel is impaired. The ketogenic diet is a high fat, low carbohydrate diet which is already used in clinical practice for the treatment of medication resistant epilepsy and is intended to switch the body over to burning fat rather than carbohydrates for fuel. In lieu of their standard tube-feeds, 5-10 children admitted to the PICU with these diagnoses will receive low carbohydrate, high fat ketogenic feeds for 2 weeks. We hypothesize that ketones will be detectable through serum tests and MRI spectroscopy studies of the brain within several days of diet initiation, and that there will be a low incidence of side effects and adverse events, Measures of interest will include the incidence of kidney stones, excessive acidosis and excessive hypoglycemia. The feasibility of implementing this protocol for a larger efficacy trial will be assessed through serial measurements of blood glucose, beta-hydroxybutyrate (a type of ketone body), and serum bicarbonate levels. In addition, levels of ketone bodies within the brain will be measured through MRI spectroscopy sequence which will be acquired at the same time as a follow-up MRI brain study ordered for clinical purposes.
Los Angeles, California
Biomarkers of Brain Injury in Critically-Ill Children on Extracorporeal Membrane Oxygenation
Sorry, in progress, not accepting new patients
The BEAM study is a multicenter, prospective, observational study in children supported on extracorporeal membrane oxygenation (ECMO). The primary goals of this study are to develop and refine a brain injury multimarker panel for accurate neurologic monitoring at the bedside and early classification of mortality and disability outcomes of critically ill children supported on ECMO.
Los Angeles, California and other locations
Our lead scientists for Brain Injury research studies include Kevin Bickart, MD/PhD Joyce Matsumoto Michael Su, MD.
Last updated: