Brain Cancer clinical trials at UCLA
6 in progress, 3 open to eligible people
REMASTer: REcurrent Brain Metastases After SRS Trial
open to eligible people ages 18 years and up
Randomized, post-market multi-center study investigating the efficacy of two sets of treatment algorithms in brain metastases (BM) patients at the time of first intervention for radiographic progression after stereotactic radiosurgery (SRS), with or without surgery.
Los Angeles, California and other locations
Administration of Encorafenib + Binimetinib + Nivolumab Versus Ipilimumab + Nivolumab in BRAF-V600 Mutant Melanoma With Brain Metastases
open to eligible people ages 18 years and up
This phase II trial compares the effect of encorafenib, binimetinib, and nivolumab versus ipilimumab and nivolumab in treating patients with BRAF- V600 mutant melanoma that has spread to the brain (brain metastases). Encorafenib and binimetinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Ipilimumab and nivolumab are monoclonal antibodies that may interfere with the ability of tumor cells to grow and spread. This trial aims to find out which approach is more effective in shrinking and controlling brain metastases from melanoma.
Los Angeles, California and other locations
FAPi PET/CT With Histopathology Validation in Patients With Various Cancers
open to eligible people ages 18 years and up
This exploratory study investigates how an imaging technique called 68Ga-FAPi-46 PET/CT can determine where and to which degree the FAPI tracer (68Ga-FAPi-46) accumulates in normal and cancer tissues in patients with cancer. Because some cancers take up 68Ga-FAPi-46 it can be seen with PET. FAP stands for Fibroblast Activation Protein. FAP is produced by cells that surround tumors (cancer associated fibroblasts). The function of FAP is not well understood but imaging studies have shown that FAP can be detected with FAPI PET/CT. Imaging FAP with FAPI PET/CT may in the future provide additional information about various cancers.
Los Angeles, California
Substudy 02D: Safety and Efficacy of Pembrolizumab in Combination With Investigational Agents or Pembrolizumab Alone in Participants With Melanoma Brain Metastasis (MK-3475-02D/KEYMAKER-U02)
Sorry, in progress, not accepting new patients
Substudy 02D is part of a larger research study that is testing experimental treatments for melanoma, a type of skin cancer. The larger study is the umbrella study. The goal of substudy 02D is to evaluate the safety and efficacy of investigational treatment arms in programmed cell-death 1 (PD-1) naïve or PD-1 exposed participants with melanoma brain metastasis (MBM) and to identify the investigational agent(s) that, when used in combination, are superior to the current treatment options/historical control available. As of amendment 2 (effective 01DEC2022) enrollment into the treatment arm of pembrolizumab and lenvatinib has been discontinued.
Los Angeles, California and other locations
Vorinostat and Temozolomide in Treating Patients With Malignant Gliomas
Sorry, in progress, not accepting new patients
This phase I trial is studying the side effects and best dose of vorinostat when given together with temozolomide in treating patients with malignant gliomas. Drugs used in chemotherapy, such as vorinostat and temozolomide, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Vorinostat may also stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Vorinostat may help temozolomide work better by making tumor cells more sensitive to the drug. Giving vorinostat together with temozolomide may kill more tumor cells.
Los Angeles, California and other locations
Zr-89 Crefmirlimab Berdoxam and Immuno-Positron Emission Tomography for the Imaging of Patients with Resectable Brain Tumors
Sorry, not yet accepting patients
This phase I trial studies how well zirconium (Zr)-89 crefmirlimab berdoxam and immuno-positron emission tomography (PET) identifies areas of immune cell activity in patients with brain tumors that can be removed by surgery (resectable). One important predictor of the immune response is the presence and change in CD8 positive (+) tumor infiltrating lymphocytes (TIL) cells. Identifying the presence and changes in CD8+ cells can be challenging, particularly for participants with central nervous system (CNS) tumors, and usually requires invasive procedures such as repeat tissue biopsies, which may not accurately represent the immune status of the entire tumor. Zr-89 crefmirlimab berdoxam is known as a radioimmunoconjugate which consists of a radiolabeled anti-CD8+ minibody whose uptake can be imaged with PET. Upon administration, Zr 89 crefmirlimab berdoxam specifically targets and binds to the CD8+ cells. This enables PET imaging and may detect CD8+ T-cell distribution and activity and may help determine the patient's response to cancer immunotherapeutic agents more accurately. Giving Zr-89 crefmirlimab berdoxam along with undergoing immuno-PET imaging may work better at identifying immune cell activity in patients with resectable brain tumors.
Los Angeles, California
Our lead scientists for Brain Cancer research studies include Jeremie Calais Antoni Ribas Robert M Prins Bartosz Chmielowski Won Kim, MD.
Last updated: