Skip to main content

Acute Myeloid Leukemia clinical trials at UCLA

45 in progress, 15 open to eligible people

Showing trials for
  • APG-2575 in Combination With Azacitidine in Patients With Acute Myeloid Leukemia (AML)

    open to eligible people ages 18-99

    This is a Phase Ib/II, open-label, multi-center study evaluating the safety, tolerability, efficacy and PK of APG-2575 in combination with Azacitidine in the patients with AML/MPAL or MDS/CMML. The study consists of dose escalation (Part I) and dose expansion phase (Part II)

    Los Angeles, California and other locations

  • Ziftomenib in Combination with Venetoclax/Azacitidine, Venetoclax, or 7+3 in Patients with AML

    open to eligible people ages 18 years and up

    This Phase 1 study will assess the safety, tolerability, and preliminary antileukemic activity of ziftomenib in combination with venetoclax and azacitidine (ven/aza), ven, and 7+3 for two different molecularly-defined arms, NPM1-m and KMT2A-r.

    Los Angeles, California and other locations

  • Biomarker-Based Treatment of Acute Myeloid Leukemia

    open to eligible people ages 18 years and up

    This screening and multi-sub-study Phase 1b/2 trial will establish a method for genomic screening followed by assigning and accruing simultaneously to a multi-study "Master Protocol (BAML-16-001-M1)." The specific subtype of acute myeloid leukemia will determine which sub-study, within this protocol, a participant will be assigned to evaluate investigational therapies or combinations with the ultimate goal of advancing new targeted therapies for approval. The study also includes a marker negative sub-study which will include all screened patients not eligible for any of the biomarker-driven sub-studies.

    Los Angeles, California and other locations

  • BMF-500 in Adults With Acute Leukemia

    open to eligible people ages 18 years and up

    A Phase 1 first-in-human dose-escalation and dose-expansion study of BMF-500, an oral FLT3 inhibitor, in adult patients with acute leukemia.

    Los Angeles, California and other locations

  • SEA-CD70 in Patients With Myeloid Malignancies

    open to eligible people ages 18 years and up

    This trial will look at a drug called SEA-CD70 with and without azacitidine, to find out if it is safe for patients with myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML). It will study SEA-CD70 to find out what its side effects are and if it works for AML and MDS. A side effect is anything the drug does besides treating cancer. This study will have six groups or "parts." - Part A will find out how much SEA-CD70 should be given to patients. - Part B will use the dose found in Part A to find out how safe SEA-CD70 is and if it works to treat patients with MDS. - Part C will use the dose found in Part A to find out how safe SEA-CD70 is and if it works to treat patients with AML. - Part D will find out how much SEA-CD70 with azacitidine should be given to patients. - Part E will use the dose found in Part D to find out how safe SEA-CD70 with azacitidine is and if it works to treat patients with MDS or MDS/AML that has not been treated. - Part F will use the dose found in Part D to find out how safe SEA-CD70 with azacitidine is and if it works to treat patients with MDS or MDS/AML.

    Los Angeles, California and other locations

  • Gilteritinib, Venetoclax and Azacitidine as a Combined Treatment for People Newly Diagnosed With Acute Myeloid Leukemia

    open to eligible people ages 18 years and up

    People with acute myeloid leukemia (AML) are usually treated with chemotherapy. Some people with AML have a changed FLT3 gene which causes leukemia cells to grow faster. Therefore, chemotherapy is less suitable to treat AML in people with the changed FLT3 gene. Gilteritinib, given with venetoclax and azacitidine, is a potential new treatment for people with AML with the changed FLT3 gene. They cannot have chemotherapy due to old age or other conditions. Before these combined 3 medicines are available as a treatment, the researchers need to understand how they are processed by and act upon the body when given together. In this study, they do this to find a suitable dose for venetoclax and to check for potential medical problems from the treatment. In this study, people newly diagnosed with AML who have the changed FLT3 gene and cannot have chemotherapy can take part. The main aims of this study are: to find suitable doses of gilteritinib, venetoclax and azacitidine as a combined treatment; to learn how they are processed by and act upon the body; to learn the remission rate; to check for medical problems during this treatment. In the study, people will visit the study clinic many times. The first visit is to check if they can take part. People will be asked about their medical history, have a medical examination, and have their vital signs checked. Also, they will have an ECG to check their heart rhythm and have some blood and urine samples taken for laboratory tests. They will have a chest X-ray and a bone marrow sample will be taken. The changed FLT3 gene will be confirmed, either by the bone marrow or a blood sample. This study will be in 2 phases. In Phase 1, different small groups of people will take venetoclax tablets containing lower to higher doses in the combined treatment. The doses of gilteritinib and azacytidine will be unchanged. This is done to find a suitable dose of venetoclax to use in phase 2 of the study. People will take tablets of gilteritinib and venetoclax once a day on a 28-day cycle. They will be given azacytidine as an infusion or an injection just under the skin. This will be for 7 days at the beginning of each 28-day cycle. They will continue cycles of treatment throughout this phase of the study. In Phase 2, more people newly diagnosed with AML with the changed FLT3 gene will take part. They will be treated with the suitable doses of the combined treatment worked out from Phase 1. Treatment will be on a 28-day cycle. People will continue on cycles of treatment throughout this phase of the study. Researchers will work out the remission rate from this phase of the study. In each phase of the study, people can continue with up to 12 cycles of treatment if they can manage any medical problems. People will visit the study clinic many times during their first treatment cycle, and less often during the next cycles. During these visits, medical problems will be recorded and some blood samples will be taken for laboratory tests. On some visits, people will also have their vital signs checked. Bone marrow samples will be taken during cycle 1, and at the beginning of cycle 3. More samples will be taken during the study from people who are not in remission. When people have finished treatment, those who have responded well to treatment and are in remission will be invited to continue with up to 24 more cycles of gilteritinib plus azacitidine. All people taking part in the study will visit the study clinic for an end-of-treatment visit. During this visit, medical problems will be recorded and some blood samples will be taken for laboratory tests. People will have a medical examination, an ECG, and will have their vital signs checked. Also, a bone marrow sample will be taken. There will be a follow-up visit 30 days later to check for medical problems. Then people will visit the clinic or get a phone call every 3 months for up to 3 years. This is to give an update on their current treatment for AML. Some people can have a stem cell transplant during the study if they meet certain study rules. They will pause their study treatment during the stem cell transplant process and continue study treatment afterwards.

    Los Angeles, California and other locations

  • BP1001 in Combination With With Venetoclax Plus Decitabine in AML

    open to eligible people ages 18 years and up

    The primary objectives of this study are to assess: (1) whether the combination of BP1001 plus venetoclax plus decitabine provides greater efficacy (Complete Remission [CR], Complete Remission with incomplete hematologic recovery [CRi], Complete Remission with partial hematologic recovery [CRh], than venetoclax plus decitabine alone (by historical comparison) in participants with untreated AML that cannot or elect not to be treated with more intensive chemotherapy; (2) whether BP1001-based treatment provides greater efficacy (CR, CRi, CRh) than intensive chemotherapy (by historical comparison) in participants with refractory/relapsed AML.

    Los Angeles, California and other locations

  • CLN-049 in Patients With Relapsed/Refractory Acute Myeloid Leukemia (AML) or Myelodysplastic Syndrome (MDS)

    open to eligible people ages 18 years and up

    CLN-049-001 is a Phase 1, open-label, multicenter, first-in-human trial of CLN-049 in patients with Relapsed/Refractory Acute Myeloid Leukemia (AML) or Myelodysplastic Syndrome (MDS)

    Los Angeles, California and other locations

  • First in Human Study of Ziftomenib in Relapsed or Refractory Acute Myeloid Leukemia

    open to eligible people ages 18 years and up

    This first-in-human (FIH) dose-escalation and dose-validation/expansion study will assess ziftomenib, a menin-MLL(KMT2A) inhibitor, in patients with relapsed or refractory acute myeloid leukemia (AML) as part of Phase 1. In Phase 2, assessment of ziftomenib will continue in patients with NPM1-m AML.

    Los Angeles, California and other locations

  • HLA-Mismatched Unrelated Donor Hematopoietic Cell Transplantation With Post-Transplantation Cyclophosphamide

    open to eligible people ages 1 year and up

    This is a prospective, multi-center, Phase II study of hematopoietic cell transplantation (HCT) using human leukocyte antigen (HLA)-mismatched unrelated donors (MMUD) for peripheral blood stem cell transplant in adults and bone marrow stem cell transplant in children. Post-transplant cyclophosphamide (PTCy), tacrolimus and mycophenolate mofetil (MMF) will be used for for graft versus host disease (GVHD) prophylaxis. This trial will study how well this treatment works in patients with hematologic malignancies.

    Duarte, California and other locations

  • Ziftomenib Combinations in Patients With Relapsed/Refractory Acute Myeloid Leukemia

    open to eligible people ages 18 years and up

    The safety, tolerability, and antileukemic response of ziftomenib in combination with standard of care treatments for patients with relapsed/refractory acute myeloid leukemia will be examined with the following agents: FLAG-IDA, low-dose cytarabine, and gilteritinib.

    Los Angeles, California and other locations

  • SENTI-202: Off-the-shelf Logic Gated CAR NK Cell Therapy in Adults With CD33 and/or FLT3 Blood Cancers Including AML/MDS

    open to eligible people ages 18-74

    This is an open-label study of the safety, biodynamics, and anti-cancer activity of SENTI-202 (an off-the-shelf logic gated CAR NK cell therapy) in patients with CD33 and/or FLT3 expressing blood cancers, including AML and MDS.

    Los Angeles, California and other locations

  • BMF-219, a Covalent Menin Inhibitor, in Adult Patients With AML, ALL (With KMT2A/ MLL1r, NPM1 Mutations), DLBCL, MM, and CLL/SLL

    open to eligible people ages 18 years and up

    A Phase 1 first-in-human dose-escalation and dose-expansion study of BMF-219, an oral covalent menin inhibitor, in adult patients with AML, ALL (with KMT2A/ MLL1r, NPM1 mutations), DLBCL, MM, and CLL/SLL.

    Los Angeles, California and other locations

  • Venetoclax and Lintuzumab-Ac225 in AML Patients

    open to eligible people ages 18 years and up

    The study is a multicenter, open label Phase I/II trial. 1. To determine the maximum tolerated dose (MTD) of lintuzumab-Ac225 added to venetoclax for patients with CD33 positive relapsed/refractory AML. (Phase 1 portion) 2. To assess the percentage of patients with CR, CRh, or Overall Response (CR + CRh), up to 6 months after the start of treatment without receiving other AML therapies. (Phase 2 portion)

    Los Angeles, California and other locations

  • Access and Distribution Protocol for Unlicensed Cryopreserved Cord Blood Units (CBUs)

    open to all eligible people

    This study is an access and distribution protocol for unlicensed cryopreserved cord blood units (CBUs) in pediatric and adult patients with hematologic malignancies and other indications.

    Los Angeles, California and other locations

  • Mocravimod As Adjunctive and Maintenance Treatment in AML Patients Undergoing Allo-HCT

    Sorry, in progress, not accepting new patients

    This is a multi-center, randomized, double-blinded, placebo controlled trial.

    Los Angeles, California and other locations

  • Comparing Venetoclax and Azacitidine Plus Cusatuzumab to Venetoclax and Azacitidine in Newly Diagnosed AML Ineligible for Intensive Therapy

    Sorry, not currently recruiting here

    The goal of this clinical trial is to learn if participants treated with the experimental drug cusatuzumab added to venetoclax and azacitidine works to treat acute myeloid leukemia (AML) compared to venetoclax and azacitidine. Venetoclax and azacitidine are drugs commonly used to treat AML in patients that are unable to receive chemotherapy to treat AML. The main question the clinical trial aims to answer is does cusatuzumab added to venetoclax and azacitidine prolong the length of time participants live compared to venetoclax and azacitidine?

    Los Angeles, California and other locations

  • ASP2215 (Gilteritinib) by Itself, ASP2215 Combined With Azacitidine or Azacitidine by Itself to Treat Adult Patients Who Have Recently Been Diagnosed With Acute Myeloid Leukemia With a FLT3 Gene Mutation and Who Cannot Receive Standard Chemotherapy

    Sorry, in progress, not accepting new patients

    This is a clinical study for adult patients who have recently been diagnosed with acute myeloid leukemia or AML. AML is a type of cancer. It is when bone marrow makes white blood cells that are not normal. These are called leukemia cells. Some patients with AML have a mutation, or change, in the FLT3 gene. This gene helps leukemia cells make a protein called FLT3. This protein causes the leukemia cells to grow faster. For patients with AML who cannot receive standard chemotherapy, azacitidine (also known as Vidaza®) is a current standard of care treatment option in the United States. This clinical study is testing an experimental medicine called ASP2215, also known as gilteritinib. Gilteritinib works by stopping the leukemia cells from making the FLT3 protein. This can help stop the leukemia cells from growing faster. This study will compare two different treatments. Patients are assigned to one of these two groups by chance: a medicine called azacitidine, also known as Vidaza®, or an experimental medicine gilteritinib in combination with azacitidine. There is a twice as much chance to receive both medicines combined than azacitidine alone. The clinical study may help show which treatment helps patients live longer.

    Los Angeles, California and other locations

  • ASP2215 Versus Salvage Chemotherapy in Patients With Relapsed or Refractory Acute Myeloid Leukemia (AML) With FMS-like Tyrosine Kinase (FLT3) Mutation

    Sorry, in progress, not accepting new patients

    The purpose of this study is to determine the clinical benefit of ASP2215 therapy in participants with FMS-like tyrosine kinase (FLT3) mutated acute myeloid leukemia (AML) who are refractory to or have relapsed after first-line AML therapy as shown with overall survival (OS) compared to salvage chemotherapy, and to determine the efficacy of ASP2215 therapy as assessed by the rate of complete remission and complete remission with partial hematological recovery (CR/CRh) in these participants. This study will also determine the overall efficacy in event-free survival (EFS) and complete remission (CR) rate of ASP2215 compared to salvage chemotherapy.

    Los Angeles, California and other locations

  • Oral Venetoclax Tablets and Oral Azacitidine as Maintenance Therapy in Adult Participants With Acute Myeloid Leukemia in First Remission After Conventional Chemotherapy

    Sorry, in progress, not accepting new patients

    This study will be conducted in two parts. Part 1 will be the Dose Confirmation portion to determine recommended Phase 3 dose (RPTD) of venetoclax in combination with azacitidine (AZA). Part 3 will be the Dose Finding portion to determine RPTD of venetoclax in combination with AZA. Part 2 and Part 3 Randomization of the study were removed.

    Los Angeles, California and other locations

  • Tagraxofusp in Combination with Venetoclax and Azacitidine in Adults with Untreated CD123+ Acute Myeloid Leukemia Who Cannot Undergo Intensive Chemotherapy

    Sorry, not yet accepting patients

    This study will be divided into 2 parts (Part 1 and Part 2). Part 1 will evaluate 2 doses of tagraxofusp (9 and 12 micrograms/kilogram/day [μg/kg/day]), used in combination with venetoclax and azacitidine, to determine the dose for Part 2. This determined dose, in combination with venetoclax and azacitidine, will then be further evaluated in Part 2 in 2 cohorts (TP53 mutated and TP53 wild type). Both parts will be conducted in participants with previously untreated CD123+ AML who are ineligible for intensive chemotherapy.

    Los Angeles, California and other locations

  • Venetoclax in Combination With Azacitidine Versus Azacitidine in Treatment Naïve Participants With Acute Myeloid Leukemia Who Are Ineligible for Standard Induction Therapy

    Sorry, in progress, not accepting new patients

    Acute Myeloid Leukaemia (AML) is an aggressive and rare cancer of myeloid cells (a white blood cell responsible for fighting infections). Successful treatment of AML is dependent on what subtype of AML the participant has, and the age of the participant when diagnosed. Venetoclax is an experimental drug that kills cancer cells by blocking a protein (part of a cell) that allows cancer cells to stay alive. This study is designed to see if adding venetoclax to azacitidine works better than azacitidine on its own. This is a Phase 3, randomized, double-blind (treatment is unknown to participants and doctors), placebo controlled study in patients with AML who are >= 18 or more years old and have not been treated before. Participants who take part in this study should not be suitable for standard induction therapy (usual starting treatment). AbbVie is funding this study which will take place at approximately 180 hospitals globally and enroll approximately 400 participants. In this study, 2/3 of participants will receive venetoclax every day with azacitidine and the remaining 1/3 will receive placebo (dummy) tablets with azacitidine. Participants will continue to have study visits and receive treatment for as long as they are having a clinical benefit. The effect of the treatment on AML will be checked by taking blood, bone marrow, scans, measuring side effects and by completing health questionnaires. Blood and bone marrow tests will be completed to see why some people respond better than others. Additional blood tests will be completed for genetic factors and to see how long the drug remains in the body.

    Los Angeles, California and other locations

  • Standard Chemotherapy to Therapy With CPX-351 and/or Gilteritinib for Patients With Newly Diagnosed AML With or Without FLT3 Mutations

    Sorry, in progress, not accepting new patients

    This phase III trial compares standard chemotherapy to therapy with liposome-encapsulated daunorubicin-cytarabine (CPX-351) and/or gilteritinib for patients with newly diagnosed acute myeloid leukemia with or without FLT3 mutations. Drugs used in chemotherapy, such as daunorubicin, cytarabine, and gemtuzumab ozogamicin, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. CPX-351 is made up of daunorubicin and cytarabine and is made in a way that makes the drugs stay in the bone marrow longer and could be less likely to cause heart problems than traditional anthracycline drugs, a common class of chemotherapy drug. Some acute myeloid leukemia patients have an abnormality in the structure of a gene called FLT3. Genes are pieces of DNA (molecules that carry instructions for development, functioning, growth and reproduction) inside each cell that tell the cell what to do and when to grow and divide. FLT3 plays an important role in the normal making of blood cells. This gene can have permanent changes that cause it to function abnormally by making cancer cells grow. Gilteritinib may block the abnormal function of the FLT3 gene that makes cancer cells grow. The overall goals of this study are, 1) to compare the effects, good and/or bad, of CPX-351 with daunorubicin and cytarabine on people with newly diagnosed AML to find out which is better, 2) to study the effects, good and/or bad, of adding gilteritinib to AML therapy for patients with high amounts of FLT3/ITD or other FLT3 mutations and 3) to study changes in heart function during and after treatment for AML. Giving CPX-351 and/or gilteritinib with standard chemotherapy may work better in treating patients with acute myeloid leukemia compared to standard chemotherapy alone.

    Los Angeles, California and other locations

  • Venetoclax for Subjects Who Have Completed a Prior Venetoclax Clinical Trial

    Sorry, in progress, not accepting new patients

    The purpose of this extension study is to provide venetoclax and obtain long-term safety data for subjects who continue to tolerate and derive benefit from receiving venetoclax in ongoing studies.

    Los Angeles, California and other locations

  • Azacitidine or Decitabine With Venetoclax for Acute Myeloid Leukemia With Prior Hypomethylating Agent Failure

    Sorry, not currently recruiting here

    This phase II trial evaluates the effect of azacitidine or decitabine and venetoclax in treating patients with acute myeloid leukemia that has not been treated before (treatment naive) or has come back (relapsed). Chemotherapy drugs, such as azacitidine, decitabine, and venetoclax, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading.

    Los Angeles, California and other locations

  • Bortezomib and Sorafenib Tosylate in Treating Patients With Newly Diagnosed Acute Myeloid Leukemia

    Sorry, in progress, not accepting new patients

    This randomized phase III trial studies how well bortezomib and sorafenib tosylate work in treating patients with newly diagnosed acute myeloid leukemia. Bortezomib and sorafenib tosylate may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Giving bortezomib and sorafenib tosylate together with combination chemotherapy may be an effective treatment for acute myeloid leukemia.

    Torrance, California and other locations

  • CPX-351 and Glasdegib for Newly Diagnosed Acute Myelogenous Leukemia With MDS Related Changes or Therapy-related Acute Myeloid Leukemia

    Sorry, in progress, not accepting new patients

    This is a phase 2 single-arm, open-label clinical trial determining efficacy of CPX-351 in combination with Glasdegib in subjects with Acute Myelogenous Leukemia with myelodysplastic syndrome related changes or therapy-related acute myeloid leukemia.

    Los Angeles, California and other locations

  • CPX-351 Plus Enasidenib for Relapsed AML

    Sorry, in progress, not accepting new patients

    This trial evaluates how well CPX-351 and enasidenib work in treating patients with acute myeloid leukemia characterized by IHD2 mutation. Drugs used in chemotherapy, such as CPX-351, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Enasidenib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Giving CPX-351 and enasidenib may work better in treating patients with acute myeloid leukemia, compared to giving only one of these therapies alone.

    Los Angeles, California and other locations

  • Galinpepimut-S Versus Investigator's Choice of Best Available Therapy for Maintenance in AML CR2/CRp2

    Sorry, in progress, not accepting new patients

    To assess the safety and efficacy of galinpepimut-S (GPS) compared with investigator's choice of best available therapy (BAT) on overall survival (OS) in subjects with acute myeloid leukemia (AML) who are in second or later complete remission (CR2) or second or later complete remission with incomplete platelet recovery (CRp2).

    Los Angeles, California and other locations

  • Gilteritinib vs Midostaurin in FLT3 Mutated Acute Myeloid Leukemia

    Sorry, in progress, not accepting new patients

    Eligible untreated patients with FLT3 acute myeloid leukemia (AML) between the ages of 18 and 70 will be randomized to receive gilteritinib or midostaurin during induction and consolidation. Patients will also receive standard chemotherapy of daunorubicin and cytarabine during induction and high-dose cytarabine during consolidation. Gilteritinib, is an oral drug that works by stopping the leukemia cells from making the FLT3 protein. This may help stop the leukemia cells from growing faster and thus may help make chemotherapy more effective. Gilteritinib has been approved by the Food and Drug Administration (FDA) for patients who have relapsed or refractory AML with a FLT3 mutation but is not approved by the FDA for newly diagnosed FLT3 AML, and its use in this setting is considered investigational. Midostaurin is an oral drug that works by blocking several proteins on cancer cells, including FLT3 that can help leukemia cells grow. Blocking this pathway can cause death to the leukemic cells. Midostaurin is approved by the FDA for the treatment of FLT3 AML. The purpose of this study is to compare the effectiveness of gilteritinib to midostaurin in patients receiving combination chemotherapy for FLT3 AML.

    Los Angeles, California and other locations

  • IO-202 as Monotherapy and IO-202 Plus Azacitidine ± Venetoclax in Patients in AML and CMML

    Sorry, in progress, not accepting new patients

    To assess safety and tolerability at increasing dose levels of IO-202 in successive cohorts of participants with AML with monocytic differentiation and CMML in order to estimate the maximum tolerated dose (MTD) or maximum administered dose (MAD) and select the recommended Phase 2 dose (RP2D)

    Los Angeles, California and other locations

  • Shattuck Labs (SL)-172154 in Subjects with MDS or AML

    Sorry, in progress, not accepting new patients

    SL03-Old Hundred(OHD)-104 is designed as a Phase 1a/1b open label, trial to evaluate the safety, pharmacokinetics (PK), pharmacodynamic (PD), and preliminary efficacy of SL-172154 monotherapy as well as in combination with azacitidine or in combination with Azacitidine and Venetoclax.

    Los Angeles, California and other locations

  • Aplitabart (IGM-8444) Alone or in Combination in Participants With Relapsed, Refractory, or Newly Diagnosed Cancers

    Sorry, in progress, not accepting new patients

    This study is a first-in-human, Phase 1a/1b, multicenter, open-label study to determine the safety, tolerability, and pharmacokinetics of aplitabart as a single agent and in combination in participants with relapsed and/or refractory solid or hematologic cancers, as well as newly diagnosed cancers, and an open-label, randomized study of aplitabart+FOLFIRI+bevacizumab.

    Los Angeles, California and other locations

  • Precision-T: A Randomized Study of Orca-T in Recipients Undergoing Allogeneic Transplantation for Hematologic Malignancies

    Sorry, in progress, not accepting new patients

    This study will evaluate the safety, tolerability, and efficacy of Orca-T, an allogeneic stem cell and T-cell immunotherapy biologic manufactured for each patient (transplant recipient) from the mobilized peripheral blood of a specific, unique donor. It is composed of purified hematopoietic stem and progenitor cells (HSPCs), purified regulatory T cells (Tregs), and conventional T cells (Tcons) in participants undergoing myeloablative allogeneic hematopoietic cell transplant transplantation for hematologic malignancies. This posting represents the Phase III component of Precision-T. The Precision-T Ph1b component is described under NCT04013685.

    Los Angeles, California and other locations

  • Precision-T: A Study of Orca-T in Recipients Undergoing Allogeneic Transplantation for Hematologic Malignancies

    Sorry, in progress, not accepting new patients

    This study will evaluate the safety, tolerability, and efficacy of Orca-T, an allogeneic stem cell and T-cell immunotherapy biologic manufactured for each patient (transplant recipient) from the mobilized peripheral blood of a specific, unique donor. It is composed of purified hematopoietic stem and progenitor cells (HSPCs), purified regulatory T cells (Tregs), and conventional T cells (Tcons) in participants undergoing myeloablative allogeneic hematopoietic cell transplant transplantation for hematologic malignancies.

    Los Angeles, California and other locations

  • Response-Based Chemotherapy in Treating Newly Diagnosed Acute Myeloid Leukemia or Myelodysplastic Syndrome in Younger Patients With Down Syndrome

    Sorry, in progress, not accepting new patients

    This phase III trial studies response-based chemotherapy in treating newly diagnosed acute myeloid leukemia or myelodysplastic syndrome in younger patients with Down syndrome. Drugs used in chemotherapy work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Response-based chemotherapy separates patients into different risk groups and treats them according to how they respond to the first course of treatment (Induction I). Response-based treatment may be effective in treating acute myeloid leukemia or myelodysplastic syndrome in younger patients with Down syndrome while reducing the side effects.

    Torrance, California and other locations

  • AG-120 or AG-221 in Combination With Induction and Consolidation Therapy in Participants With Newly Diagnosed Acute Myeloid Leukemia (AML) With an IDH1 and/or IDH2 Mutation

    Sorry, in progress, not accepting new patients

    The purpose of this Phase I, multicenter, clinical trial is to evaluate the safety of AG-120 and AG-221 when given in combination with standard AML induction and consolidation therapy. The study plans to evaluate up to 2 dose levels of AG-120 in participants with an isocitrate dehydrogenase protein 1 (IDH1) mutation and up to 2 dose levels of AG-221 in participants with an isocitrate dehydrogenase protein 2 (IDH2) mutation. AG-120 or AG-221 will be administered with 2 types of AML induction therapies (cytarabine with either daunorubicin or idarubicin) and 2 types of AML consolidation therapies (mitoxantrone with etoposide [ME] or cytarabine). After consolidation therapy, participants may continue on to maintenance therapy and receive daily treatment with single-agent AG-120 or AG-221 until relapse, development of an unacceptable toxicity, or hematopoietic stem cell transplant (HSCT). The study will end when all participants have discontinued study treatment.

    Los Angeles, California and other locations

  • Stem Cell Transplantation With NiCord® (Omidubicel) vs Standard UCB in Patients With Leukemia, Lymphoma, and MDS

    Sorry, in progress, not accepting new patients

    This study is an open-label, controlled, multicenter, international, Phase III, randomized study of transplantation of NiCord® versus transplantation of one or two unmanipulated, unrelated cord blood units in patients with acute lymphoblastic leukemia or acute myeloid leukemia, myelodysplastic syndrome, chronic myeloid leukemia or lymphoma, all with required disease features rendering them eligible for allogeneic transplantation.

    Los Angeles, California and other locations

  • IMGN632 in Patients With Untreated BPDCN and Relapsed/Refractory BPDCN

    Sorry, in progress, not accepting new patients

    This is an open-label, multi-center, Phase 1/2 study to determine the MTD and assess the safety, tolerability, PK, immunogenicity, and anti-leukemia activity of IMGN632 when administered as monotherapy to patients with CD123+ disease.

    Los Angeles, California and other locations

  • Oral LY3410738 in Patients With Advanced Hematologic Malignancies With IDH1 or IDH2 Mutations

    Sorry, in progress, not accepting new patients

    This is an open-label, multi-center Phase 1 study of LY3410738, an oral, covalent isocitrate dehydrogenase (IDH) inhibitor, in patients with IDH1 and/or IDH2-mutant advanced hematologic malignancies who may have received standard therapy

    Los Angeles, California and other locations

  • KPT-8602 in Participants With Relapsed/Refractory Cancer Indications

    Sorry, in progress, not accepting new patients

    This is a first-in-human, multi-center, open-label clinical study with separate dose escalation (Phase 1) and expansion (Phase 2) stages to assess preliminary safety, tolerability, and efficacy of the second generation oral XPO1 inhibitor KPT-8602 in participants with relapsed/refractory multiple myeloma (MM), metastatic colorectal cancer (mCRC), metastatic castration resistant prostate cancer (mCRPC), higher risk myelodysplastic syndrome (HRMDS), acute myeloid leukemia (AML) and newly diagnosed intermediate/high-risk MDS. Dose escalation and dose expansion may be included for all parts of the study as determined by ongoing study results.

    Los Angeles, California and other locations

  • Tamibarotene Plus Venetoclax/Azacitidine in Participants with Newly Diagnosed AML

    Sorry, in progress, not accepting new patients

    Tamibarotene is being studied as a treatment for participants with a type of leukemia called acute myeloid leukemia, or AML for short. Tamibarotene is being studied as a treatment for participants with AML whose cancer has a specific genetic abnormality characterized by the overexpression of the retinoic acid receptor alpha (RARA) gene. This genetic profile is found in about 3 of every 10 people with AML. During the trial, tamibarotene will be given with 2 other drugs that are already used together to treat people who have AML and who cannot start treatment with standard chemotherapy.

    Los Angeles, California and other locations

  • EAP of CPX-351 (VYXEOS) for Patients 60-75 Years of Age With Secondary AML

    Sorry, not accepting new patients

    This study is a Phase IV Expanded Access Protocol (EAP) of CPX-351 in patients with secondary acute myeloid leukemia who are suitable for treatment with intensive chemotherapy.

    Los Angeles, California and other locations

  • Gilteritinib (ASP2215) in Patients With FMS-like Tyrosine Kinase 3 (FLT3) Mutated Relapsed or Refractory Acute Myeloid Leukemia (AML) or FLT3-Mutated AML in Complete Remission (CR) With Minimal Residual Disease (MRD)

    Sorry, not accepting new patients

    The purpose of this study is to provide expanded access to ASP2215 for subjects with FLT3-mutated relapsed or refractory AML or FLT3-mutated AML in composite complete remission (CRc) (complete remission [CR], complete remission with incomplete hematologic recovery [CRi], complete remission with incomplete platelet recovery [CRp]) with MRD without access to comparable or alternative therapy.

    Los Angeles, California and other locations

  • Natural History and Biology of Long-Term Late Effects Following Hematopoietic Cell Transplant for Childhood Hematologic Malignancies

    Sorry, in progress, not accepting new patients

    This is a prospective non-therapeutic study, assessing the long-term toxicity of pediatric HCT for hematologic malignancies. This study is a collaboration between the Pediatric Blood and Marrow Transplant Consortium (PBMTC), the Center for International Blood and Marrow Transplant Research (CIBMTR), the National Marrow Transplant Program (NMDP) and the Resource for Clinical Investigation in Blood and Marrow Transplantation (RCI-BMT) of the CIBMTR. The study will enroll pediatric patients who undergo myeloablative HCT for hematologic malignancies at PBMTC sites.

    Los Angeles, California and other locations

Our lead scientists for Acute Myeloid Leukemia research studies include .

Last updated: